Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MAbs ; 12(1): 1831880, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33183151

RESUMO

CXCR1 and CXCR2 signaling play a critical role in neutrophil migration, angiogenesis, and tumorigenesis and are therefore an attractive signaling axis to target in a variety of indications. In human, a total of seven chemokines signal through these receptors and comprise the ELR+CXC chemokine family, so named because of the conserved ELRCXC N-terminal motif. To fully antagonize CXCR1 and CXCR2 signaling, an effective therapeutic should block either both receptors or all seven ligands, yet neither approach has been fully realized clinically. In this work, we describe the generation and characterization of LY3041658, a humanized monoclonal antibody that binds and neutralizes all seven human and cynomolgus monkey ELR+CXC chemokines and three of five mouse and rat ELR+CXC chemokines with high affinity. LY3041658 is able to block ELR+CXC chemokine-induced Ca2+ mobilization, CXCR2 internalization, and chemotaxis in vitro as well as neutrophil mobilization in vivo without affecting other neutrophil functions. In addition to the in vitro and in vivo activity, we characterized the epitope and structural basis for binding in detail through alanine scanning, crystallography, and mutagenesis. Together, these data provide a robust preclinical characterization of LY3041658 for which the efficacy and safety is being evaluated in human clinical trials for neutrophilic skin diseases.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Receptores de Interleucina-8A/antagonistas & inibidores , Receptores de Interleucina-8B/antagonistas & inibidores , Animais , Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Afinidade de Anticorpos , Quimiotaxia de Leucócito/imunologia , Humanos , Macaca fascicularis , Camundongos , Neutrófilos/imunologia , Ratos
2.
Biotechnol Bioeng ; 115(3): 705-718, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29150961

RESUMO

Cross-linking of the Fcγ receptors expressed on the surface of hematopoietic cells by IgG immune complexes triggers the activation of key immune effector mechanisms, including antibody-dependent cell mediated cytotoxicity (ADCC). A conserved N-glycan positioned at the N-terminal region of the IgG CH 2 domain is critical in maintaining the quaternary structure of the molecule for Fcγ receptor engagement. The removal of a single core fucose residue from the N-glycan results in a considerable increase in affinity for FcγRIIIa leading to an enhanced receptor-mediated immunoeffector function. The enhanced potency of the molecule translates into a number of distinct advantages in the development of IgG antibodies for cancer therapy. In an effort to significantly increase the potency of an anti-CD20, IgG1 molecule, we selectively targeted the de novo GDP-fucose biosynthesis pathway of the host CHO cell line to generate >80% afucosylated IgG1 resulting in enhanced FcγRIIIa binding (13-fold) and in vitro ADCC cell-based activity (11-fold). In addition, this effective glycoengineering strategy also allowed for the utilization of the alternate GDP-fucose salvage pathway to provide a fast and efficient mechanism to manipulate the N-glycan fucosylation level to modulate IgG immune effector function.


Assuntos
Cricetulus/metabolismo , Imunoglobulina G/biossíntese , Engenharia de Proteínas , Rituximab/biossíntese , Animais , Cricetulus/genética , Glicosilação , Imunoglobulina G/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Rituximab/genética
3.
PLoS One ; 8(3): e58575, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23536797

RESUMO

Fibroblast growth factor 21 is a novel hormonal regulator with the potential to treat a broad variety of metabolic abnormalities, such as type 2 diabetes, obesity, hepatic steatosis, and cardiovascular disease. Human recombinant wild type FGF21 (FGF21) has been shown to ameliorate metabolic disorders in rodents and non-human primates. However, development of FGF21 as a drug is challenging and requires re-engineering of its amino acid sequence to improve protein expression and formulation stability. Here we report the design and characterization of a novel FGF21 variant, LY2405319. To enable the development of a potential drug product with a once-daily dosing profile, in a preserved, multi-use formulation, an additional disulfide bond was introduced in FGF21 through Leu118Cys and Ala134Cys mutations. FGF21 was further optimized by deleting the four N-terminal amino acids, His-Pro-Ile-Pro (HPIP), which was subject to proteolytic cleavage. In addition, to eliminate an O-linked glycosylation site in yeast a Ser167Ala mutation was introduced, thus allowing large-scale, homogenous protein production in Pichia pastoris. Altogether re-engineering of FGF21 led to significant improvements in its biopharmaceutical properties. The impact of these changes was assessed in a panel of in vitro and in vivo assays, which confirmed that biological properties of LY2405319 were essentially identical to FGF21. Specifically, subcutaneous administration of LY2405319 in ob/ob and diet-induced obese (DIO) mice over 7-14 days resulted in a 25-50% lowering of plasma glucose coupled with a 10-30% reduction in body weight. Thus, LY2405319 exhibited all the biopharmaceutical and biological properties required for initiation of a clinical program designed to test the hypothesis that administration of exogenous FGF21 would result in effects on disease-related metabolic parameters in humans.


Assuntos
Fatores de Crescimento de Fibroblastos/farmacologia , Proteínas Recombinantes , Células 3T3 , Substituição de Aminoácidos , Animais , Linhagem Celular , Desenho de Fármacos , Fatores de Crescimento de Fibroblastos/química , Fatores de Crescimento de Fibroblastos/genética , Expressão Gênica , Variação Genética , Células Hep G2 , Humanos , Proteínas Klotho , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Modelos Moleculares , Pichia/genética , Pichia/metabolismo , Conformação Proteica , Estabilidade Proteica , Temperatura
4.
Peptides ; 28(4): 935-48, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17328992

RESUMO

A long-acting (basal) insulin capable of delivering flat, sustained, reproducible glycemic control with once daily administration represents an improvement in the treatment paradigm for both type 1 and type 2 diabetes. Optimization of insulin pharmacodynamics is achievable through structural modification, but often at the expense of alterations in receptor affinity and selectivity. A series of isoelectric point (pI)-shifted insulin analogs based on the human insulin sequence or the GlyA21 acid stable variant were prepared by semi-synthetic methods. The pI shift was achieved through systematic addition of one or more arginine (Arg) or lysine (Lys) residues at the N terminus of the A chain, the N terminus of the B chain, the C terminus of the B chain, or through a combination of additions at two of the three sites. The analogs were evaluated for their affinity for the insulin and IGF-1 receptors, and aqueous solubility under physiological pH conditions. Notably, the presence of positively charged amino acid residues at the N terminus of the A chain was consistently associated with an enhanced insulin to IGF-1 receptor selectivity profile. Increased IGF-1 receptor affinity that results from Arg addition to the C terminus of the B chain was attenuated by cationic extension at the N terminus of the A chain. Analogs 10, 17, and 18 displayed in vitro receptor selectivity similar to that of native insulin and solubility at physiological pH that suggested the potential for extended time action. Accordingly, the in vivo pharmacokinetic and pharmacodynamic profiles of these analogs were established in a somatostatin-induced diabetic dog model. Analog 18 (A0:Arg, A21:Gly, B31:Arg, B32:Arg human insulin) exhibited a pharmacological profile comparable to that of analog 15 (insulin glargine) but with a 4.5-fold more favorable insulin:IGF-1 receptor selectivity. These results demonstrate that the selective combination of positive charge to the N terminus of the A chain and the C terminus of the B chain generates an insulin with sustained pharmacology and a near-native receptor selectivity profile.


Assuntos
Hipoglicemiantes/farmacologia , Insulina/farmacologia , Receptor IGF Tipo 1/agonistas , Receptor de Insulina/agonistas , Células 3T3-L1 , Sequência de Aminoácidos , Aminoácidos/química , Animais , Arginina/química , Ligação Competitiva , Glicemia/metabolismo , Linhagem Celular , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Cães , Feminino , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacocinética , Insulina/análogos & derivados , Insulina/farmacocinética , Ponto Isoelétrico , Lisina/química , Masculino , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Radioimunoensaio , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...